Polarization of an algebraic form
In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.
Although the technique is deceptively simple, it has applications in many areas of abstract mathematics: in particular to algebraic geometry, invariant theory, and representation theory. Polarization and related techniques form the foundations for Weyl's invariant theory.
Contents
1 The technique
2 Examples
3 Mathematical details and consequences
3.1 The polarization isomorphism (by degree)
3.2 The algebraic isomorphism
3.3 Remarks
4 References
The technique
The fundamental ideas are as follows. Let f(u) be a polynomial in n variables u = (u1, u2, ..., un). Suppose that f is homogeneous of degree d, which means that
f(t u) = tdf(u) for all t.
Let u(1), u(2), ..., u(d) be a collection of indeterminates with u(i) = (u1(i), u2(i), ..., un(i)), so that there are dn variables altogether. The polar form of f is a polynomial
F(u(1), u(2), ..., u(d))
which is linear separately in each u(i) (i.e., F is multilinear), symmetric in the u(i), and such that
F(u,u, ..., u)=f(u).
The polar form of f is given by the following construction
- F(u(1),…,u(d))=1d!∂∂λ1…∂∂λdf(λ1u(1)+⋯+λdu(d))|λ=0.{displaystyle F({mathbf {u} }^{(1)},dots ,{mathbf {u} }^{(d)})={frac {1}{d!}}{frac {partial }{partial lambda _{1}}}dots {frac {partial }{partial lambda _{d}}}f(lambda _{1}{mathbf {u} }^{(1)}+dots +lambda _{d}{mathbf {u} }^{(d)})|_{lambda =0}.}
In other words, F is a constant multiple of the coefficient of λ1 λ2...λd in the expansion of f(λ1u(1) + ... + λdu(d)).
Examples
- Suppose that x=(x,y) and f(x) is the quadratic form
- f(x)=x2+3xy+2y2.{displaystyle f({mathbf {x} })=x^{2}+3xy+2y^{2}.}
Then the polarization of f is a function in x(1) = (x(1), y(1)) and x(2) = (x(2), y(2)) given by
- F(x(1),x(2))=x(1)x(2)+32x(2)y(1)+32x(1)y(2)+2y(1)y(2).{displaystyle F({mathbf {x} }^{(1)},{mathbf {x} }^{(2)})=x^{(1)}x^{(2)}+{frac {3}{2}}x^{(2)}y^{(1)}+{frac {3}{2}}x^{(1)}y^{(2)}+2y^{(1)}y^{(2)}.}
- More generally, if f is any quadratic form, then the polarization of f agrees with the conclusion of the polarization identity.
A cubic example. Let f(x,y)=x3 + 2xy2. Then the polarization of f is given by
- F(x(1),y(1),x(2),y(2),x(3),y(3))=x(1)x(2)x(3)+23x(1)y(2)y(3)+23x(3)y(1)y(2)+23x(2)y(3)y(1).{displaystyle F(x^{(1)},y^{(1)},x^{(2)},y^{(2)},x^{(3)},y^{(3)})=x^{(1)}x^{(2)}x^{(3)}+{frac {2}{3}}x^{(1)}y^{(2)}y^{(3)}+{frac {2}{3}}x^{(3)}y^{(1)}y^{(2)}+{frac {2}{3}}x^{(2)}y^{(3)}y^{(1)}.}
Mathematical details and consequences
The polarization of a homogeneous polynomial of degree d is valid over any commutative ring in which d! is a unit. In particular, it holds over any field of characteristic zero or whose characteristic is strictly greater than d.
The polarization isomorphism (by degree)
For simplicity, let k be a field of characteristic zero and let A = k[x] be the polynomial ring in n variables over k. Then A is graded by degree, so that
- A=⨁dAd.{displaystyle A=bigoplus _{d}A_{d}.}
The polarization of algebraic forms then induces an isomorphism of vector spaces in each degree
- Ad≅Symdkn{displaystyle A_{d}cong Sym^{d}k^{n}}
where Symd is the d-th symmetric power of the n-dimensional space kn.
These isomorphisms can be expressed independently of a basis as follows. If V is a finite-dimensional vector space and A is the ring of k-valued polynomial functions on V, graded by homogeneous degree, then polarization yields an isomorphism
- Ad≅SymdV∗.{displaystyle A_{d}cong Sym^{d}V^{*}.}
The algebraic isomorphism
Furthermore, the polarization is compatible with the algebraic structure on A, so that
- A≅Sym⋅V∗{displaystyle Acong Sym^{cdot }V^{*}}
where Sym⋅V∗ is the full symmetric algebra over V∗.
Remarks
- For fields of positive characteristic p, the foregoing isomorphisms apply if the graded algebras are truncated at degree p-1.
- There do exist generalizations when V is an infinite dimensional topological vector space.
References
Claudio Procesi (2007) Lie Groups: an approach through invariants and representations, Springer, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 9780387260402 .