Posts

Showing posts from February 12, 2019

Black Tarantula

Image
Black Tarantula Cover of The Amazing Spider-Man #432 (March 1998). Art by John Romita, Jr. Publication information Publisher Marvel Comics First appearance The Amazing Spider-Man #419 (January 1997) Created by Tom DeFalco (writer) Steve Skroce (artist) In-story information Alter ego Carlos LaMuerto Team affiliations The Hand Abilities Skilled martial artist Superhuman strength, speed, agility, durability and reflexes/reactions Genius-level intelligence Energy beam projection through eyes Healing factor Black Tarantula is a fictional character appearing in American comic books published by Marvel Comics. The character first appears in The Amazing Spider-Man #419 (January 1997), and makes his first full appearance in Amazing Spider-Man #432 (March 1998). Black Tarantula was created by writer Tom DeFalco and artist Steve Skroce. Contents 1 Fictional character biography 2 Powers and abilities 3 Other versions 3.1 MC2 4 ...

Taradeau

Image
An Taradeau amo in usa ka komyun ha departamento han Var ngan ha rehiyon han Provence-Alpes-Côte d'Azur ha nasod han Fransya. k h l Mga komyun ha departamento han Var Les Adrets-de-l'Estérel  · Aiguines  · Ampus  · Les Arcs  · Artignosc-sur-Verdon  · Artigues  · Aups  · Bagnols-en-Forêt  · Bandol  · Bargème  · Bargemon  · Barjols  · La Bastide  · Baudinard-sur-Verdon  · Bauduen  · Le Beausset  · Belgentier  · Besse-sur-Issole  · Bormes-les-Mimosas  · Le Bourguet  · Bras  · Brenon  · Brignoles  · Brue-Auriac  · Cabasse  · La Cadière-d'Azur  · Callas  · Callian  · Camps-la-Source  · Le Cannet-des-Maures  · Carcès  · Carnoules  · Carqueiranne  · Le Castellet  · Cavalaire-sur-Mer  · La Celle  · Châteaudouble  · Châteauvert  · Châteauvieux  · Claviers  · Cogolin  · Collobrières  · Comps-sur-Artuby  · Correns  · Cotignac  · La Crau  · La Croix-Valmer  · Cuers  · Dragui...

Integral with 2 different answers using real and complex analysis

Image
2 The integral is: $ int_0^{2 pi} frac {1}{2-cos theta}$ Just to skip time, the answer of the indefinite integral is $ frac{2tan^-1( sqrt{3} tan( frac{ theta}{2}))}{ sqrt{3}}$ Evaluating it from $0$ to $ 2 pi$ $ frac{2tan^-1( sqrt{3} tan( pi))}{ sqrt{3}} - frac{2tan^-1( sqrt{3} tan( 0))}{ sqrt{3}} = 0 - 0 = 0$ Using complex analysis: The integral $ int_0^{2 pi} frac {1}{2-cos theta}$ is transformed into $ 2i int_C frac {dz}{z^2-4z+1} = 2i int_C frac {dz}{(z-2+ sqrt{3})(z-2- sqrt{3})}$ Where C is the boundary of the circle $ |z| = 1 ---> z = e^{i theta}$ Then by Cauchy's integral formula, since $ z = 2 - sqrt{3}$ is inside the domain of the region bounded by $C$ , then: $2i int_C frac {dz}{(z-2+ sqrt{3})(z-2- sqrt{3})} = 2 pi i frac{2i}{2- sqrt{3} -2- sqrt{3}} = 2 pi i frac{2i}{-2 sqrt{3...