Posts

Showing posts from December 2, 2018

Golden Lion

Image
This article is about the film award. For other uses, see Golden Lion (disambiguation). Golden Lion ( Leone d'Oro ) Location Venice Country Italy Presented by Venice Film Festival First awarded 1949 Currently held by Roma (2018) The Golden Lion (Italian: Leone d'Oro ) is the highest prize given to a film at the Venice Film Festival. The prize was introduced in 1949 by the organizing committee and is now regarded as one of the film industry's most prestigious and distinguished prizes. In 1970, a second Golden Lion was introduced; this is an honorary award for people who have made an important contribution to cinema. The prize was introduced in 1949 as the Golden Lion of Saint Mark (the winged lion which had appeared on the flag of the Republic of Venice). [1] Previously, the equivalent prize was the Gran Premio Internazionale di Venezia (Grand International Prize of Venice), awarded in 1947 and 1948. Before that, from 1934 until 1942, the h...

Verson

Image
An Verson amo in usa ka komyun ha departamento han Calvados ngan ha rehiyon han Basse-Normandie ha nasod han Fransya. k h l Mga komyun ha departamento han Calvados Ablon  · Acqueville  · Agy  · Aignerville  · Airan  · Amayé-sur-Orne  · Amayé-sur-Seulles  · Amblie  · Amfreville  · Anctoville  · Angerville  · Angoville  · Anguerny  · Anisy  · Annebault  · Arganchy  · Argences  · Arromanches-les-Bains  · Asnelles  · Asnières-en-Bessin  · Auberville  · Aubigny  · Audrieu  · Aunay-sur-Odon  · Auquainville  · Les Autels-Saint-Bazile  · Authie  · Les Authieux-Papion  · Les Authieux-sur-Calonne  · Auvillars  · Avenay  · Balleroy  · Banneville-la-Campagne  · Banneville-sur-Ajon  · Banville  · Barbery  · Barbeville  · Barneville-la-Bertran  · Baron-sur-Odon  · Barou-en-Auge  · Basly  · Basseneville  · Bauquay  · Bavent  · Bayeux  · Bazenville  · La Bazoque  · Beaufour-Druval  · Beauli...

Resolution of a torsion sheaf

Image
up vote 3 down vote favorite Let $J$ be the hyperplane divisor in $mathbb{C}P^2$ , and let $i:C hookrightarrow mathbb{C}P^2$ be the closed immersion of a smooth generic curve of degree 2. We know that $Csimeq mathbb{C}P^1$ , and let $H$ be the hyperplane divisor in $C$ . So loosely $H sim frac{1}{2}J|_C$ . The question is, what is the projective (locally free) resolution of $i_* mathcal{O}_C(H)$ ? in other words, we have the following resolution in general, begin{equation} 0longrightarrow mathcal{L}_2longrightarrowmathcal{L_1}longrightarrowmathcal{L}_0longrightarrow i_* mathcal{O}_C(H) longrightarrow 0, end{equation} what are the locally free sheaves $mathcal{L}_i$ ? ag.algebraic-geometry projective-resolution share |...