Origin of term Ahlfors-David regular












3














Much of the literature on analysis in metric spaces makes use of an assumption called Ahlfors regularity or Ahlfors-David regularity. Let $q>0$. A metric space $(X,d)$ is Ahlfors(-David) $q$-regular if there exists $Cgeq 1$ such that $C^{-1}r^q leq mathcal{H}^q(B(x,r)) leq Cr^q$ for all $x in X$ and $r in (0, text{diam } X)$. Here, $mathcal{H}^q$ denotes the $q$-dimensional Hausdorff measure. The term is so ubiquitous in the literature in this area that the origin seems impossible to trace down. I believe David refers to Guy David.



Can anyone fill me in on the origin of the terms and what exactly Ahlfors and David did using this type of condition?










share|cite|improve this question



























    3














    Much of the literature on analysis in metric spaces makes use of an assumption called Ahlfors regularity or Ahlfors-David regularity. Let $q>0$. A metric space $(X,d)$ is Ahlfors(-David) $q$-regular if there exists $Cgeq 1$ such that $C^{-1}r^q leq mathcal{H}^q(B(x,r)) leq Cr^q$ for all $x in X$ and $r in (0, text{diam } X)$. Here, $mathcal{H}^q$ denotes the $q$-dimensional Hausdorff measure. The term is so ubiquitous in the literature in this area that the origin seems impossible to trace down. I believe David refers to Guy David.



    Can anyone fill me in on the origin of the terms and what exactly Ahlfors and David did using this type of condition?










    share|cite|improve this question

























      3












      3








      3







      Much of the literature on analysis in metric spaces makes use of an assumption called Ahlfors regularity or Ahlfors-David regularity. Let $q>0$. A metric space $(X,d)$ is Ahlfors(-David) $q$-regular if there exists $Cgeq 1$ such that $C^{-1}r^q leq mathcal{H}^q(B(x,r)) leq Cr^q$ for all $x in X$ and $r in (0, text{diam } X)$. Here, $mathcal{H}^q$ denotes the $q$-dimensional Hausdorff measure. The term is so ubiquitous in the literature in this area that the origin seems impossible to trace down. I believe David refers to Guy David.



      Can anyone fill me in on the origin of the terms and what exactly Ahlfors and David did using this type of condition?










      share|cite|improve this question













      Much of the literature on analysis in metric spaces makes use of an assumption called Ahlfors regularity or Ahlfors-David regularity. Let $q>0$. A metric space $(X,d)$ is Ahlfors(-David) $q$-regular if there exists $Cgeq 1$ such that $C^{-1}r^q leq mathcal{H}^q(B(x,r)) leq Cr^q$ for all $x in X$ and $r in (0, text{diam } X)$. Here, $mathcal{H}^q$ denotes the $q$-dimensional Hausdorff measure. The term is so ubiquitous in the literature in this area that the origin seems impossible to trace down. I believe David refers to Guy David.



      Can anyone fill me in on the origin of the terms and what exactly Ahlfors and David did using this type of condition?







      reference-request mg.metric-geometry cv.complex-variables geometric-measure-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      mdr

      1063




      1063






















          1 Answer
          1






          active

          oldest

          votes


















          3














          To answer the last question, Calderón's problem was a question regarding mapping properties of the Cauchy integral



          $$ C_{Gamma}f(z)=frac{1}{2pi i} intlimits_{Gamma} frac{f(xi)}{xi-z} dxi$$



          namely, to determine the rectifiable Jordan curves $Gamma$ for which $C_{Gamma}$ gives rise to a bounded operator on $L^2(Gamma)$. This was solved by Guy David in 1984 who showed that $C_{Gamma}$ is bounded on $L^2(Gamma)$ precisely when $Gamma$ satisfies $ mathcal{H}(Gamma cap B(z_{0},r)) leq Cr$ for every $z_{0}inmathbb{C}$, $r>0$ and some constant $C$. This opened up a large study of (what was called then) Ahlfors regularity by David and Semmes. Some of the results of that study are collected in their monograph from the 90's, Analysis of and on Uniformly Rectifiable Sets.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "504"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319955%2forigin-of-term-ahlfors-david-regular%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            To answer the last question, Calderón's problem was a question regarding mapping properties of the Cauchy integral



            $$ C_{Gamma}f(z)=frac{1}{2pi i} intlimits_{Gamma} frac{f(xi)}{xi-z} dxi$$



            namely, to determine the rectifiable Jordan curves $Gamma$ for which $C_{Gamma}$ gives rise to a bounded operator on $L^2(Gamma)$. This was solved by Guy David in 1984 who showed that $C_{Gamma}$ is bounded on $L^2(Gamma)$ precisely when $Gamma$ satisfies $ mathcal{H}(Gamma cap B(z_{0},r)) leq Cr$ for every $z_{0}inmathbb{C}$, $r>0$ and some constant $C$. This opened up a large study of (what was called then) Ahlfors regularity by David and Semmes. Some of the results of that study are collected in their monograph from the 90's, Analysis of and on Uniformly Rectifiable Sets.






            share|cite|improve this answer


























              3














              To answer the last question, Calderón's problem was a question regarding mapping properties of the Cauchy integral



              $$ C_{Gamma}f(z)=frac{1}{2pi i} intlimits_{Gamma} frac{f(xi)}{xi-z} dxi$$



              namely, to determine the rectifiable Jordan curves $Gamma$ for which $C_{Gamma}$ gives rise to a bounded operator on $L^2(Gamma)$. This was solved by Guy David in 1984 who showed that $C_{Gamma}$ is bounded on $L^2(Gamma)$ precisely when $Gamma$ satisfies $ mathcal{H}(Gamma cap B(z_{0},r)) leq Cr$ for every $z_{0}inmathbb{C}$, $r>0$ and some constant $C$. This opened up a large study of (what was called then) Ahlfors regularity by David and Semmes. Some of the results of that study are collected in their monograph from the 90's, Analysis of and on Uniformly Rectifiable Sets.






              share|cite|improve this answer
























                3












                3








                3






                To answer the last question, Calderón's problem was a question regarding mapping properties of the Cauchy integral



                $$ C_{Gamma}f(z)=frac{1}{2pi i} intlimits_{Gamma} frac{f(xi)}{xi-z} dxi$$



                namely, to determine the rectifiable Jordan curves $Gamma$ for which $C_{Gamma}$ gives rise to a bounded operator on $L^2(Gamma)$. This was solved by Guy David in 1984 who showed that $C_{Gamma}$ is bounded on $L^2(Gamma)$ precisely when $Gamma$ satisfies $ mathcal{H}(Gamma cap B(z_{0},r)) leq Cr$ for every $z_{0}inmathbb{C}$, $r>0$ and some constant $C$. This opened up a large study of (what was called then) Ahlfors regularity by David and Semmes. Some of the results of that study are collected in their monograph from the 90's, Analysis of and on Uniformly Rectifiable Sets.






                share|cite|improve this answer












                To answer the last question, Calderón's problem was a question regarding mapping properties of the Cauchy integral



                $$ C_{Gamma}f(z)=frac{1}{2pi i} intlimits_{Gamma} frac{f(xi)}{xi-z} dxi$$



                namely, to determine the rectifiable Jordan curves $Gamma$ for which $C_{Gamma}$ gives rise to a bounded operator on $L^2(Gamma)$. This was solved by Guy David in 1984 who showed that $C_{Gamma}$ is bounded on $L^2(Gamma)$ precisely when $Gamma$ satisfies $ mathcal{H}(Gamma cap B(z_{0},r)) leq Cr$ for every $z_{0}inmathbb{C}$, $r>0$ and some constant $C$. This opened up a large study of (what was called then) Ahlfors regularity by David and Semmes. Some of the results of that study are collected in their monograph from the 90's, Analysis of and on Uniformly Rectifiable Sets.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 3 hours ago









                Josiah Park

                1,037319




                1,037319






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319955%2forigin-of-term-ahlfors-david-regular%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Understanding the information contained in the Deep Space Network XML data?

                    Ross-on-Wye

                    Eastern Orthodox Church