Index of summation - integer?
Can the index of summation of a sum be anything other than an integer? What is the reasoning behind the answer?
summation
add a comment |
Can the index of summation of a sum be anything other than an integer? What is the reasoning behind the answer?
summation
Sure, you can sum over any set you like. It turns out that if you sum over something uncountable, the sum will diverge unless all but countably many of the terms are zero, but you can still sum over them.
– user3482749
40 mins ago
add a comment |
Can the index of summation of a sum be anything other than an integer? What is the reasoning behind the answer?
summation
Can the index of summation of a sum be anything other than an integer? What is the reasoning behind the answer?
summation
summation
asked 2 hours ago
Christina Daniel
354
354
Sure, you can sum over any set you like. It turns out that if you sum over something uncountable, the sum will diverge unless all but countably many of the terms are zero, but you can still sum over them.
– user3482749
40 mins ago
add a comment |
Sure, you can sum over any set you like. It turns out that if you sum over something uncountable, the sum will diverge unless all but countably many of the terms are zero, but you can still sum over them.
– user3482749
40 mins ago
Sure, you can sum over any set you like. It turns out that if you sum over something uncountable, the sum will diverge unless all but countably many of the terms are zero, but you can still sum over them.
– user3482749
40 mins ago
Sure, you can sum over any set you like. It turns out that if you sum over something uncountable, the sum will diverge unless all but countably many of the terms are zero, but you can still sum over them.
– user3482749
40 mins ago
add a comment |
6 Answers
6
active
oldest
votes
You will have obvious issues if you are attempting an uncountable sum of non-zero values, but otherwise there is no greater difficulty than sums over an integer index
Here is an example:
$$sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k = frac{zeta(k-1)}{zeta(k)}$$ where $frac a b$ is a rational expressed in lowest terms and real $k gt 2$
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
1
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
add a comment |
The "index" of summation, the way I'm interpreting your question, corresponds to an enumeration of the elements of the set over which you are summing. For example, if you want to add the numbers $x_{1},...,x_{n}$, then you would write
$$sum_{k=1}^{n}x_{k}$$
You can also think of this as
$$sum_{xin S}x$$
where $S={x_{1},...,x_{n}}$.
However, there are sets which are not countable - this means the elements of the set are not in one-to-one correspondence with the set of integers. For example, you can take the sum of every real number in $[0,1]$, which you could write as
$$sum_{xin [0,1]}x$$
The problem is that because this set is uncountable, so there's no natural ordering for which to add these numbers. And in this case the sum is infinite. However if you know that a sum
$$sum_{xin S}x<infty$$
then, even if $S$ is uncountable, this can be rewritten as a sum over a countable set.
add a comment |
Normally yes, although it can be generalized to members of enumerable sets, for example, instead of writing
$$sum_{i=0}^N f(x_i)$$
you can simply write
$$sum_{xin A} f(x)$$
where $A$ is the set over which summation is done. This is very common simplification of notation.
What you are probably asking is, can they be noninteger real numbers... the answer is: those are not sums in the same sense, but people have generalized summation to noninteger indices. You can look up summability calculus, it's a beautiful theory, although I do not know what your mathematical background is.
add a comment |
Sums over non-integer indices are actually quite common. Of course the notation must make it clear what indices are being used. But you sometimes see expressions such as
$$ sum_{alpha in A} f(alpha) $$
where $A$ is some set (not necessarily of integers).
It should be noted that if $A$ is infinite, conditionally convergent sums will depend on the order in which the terms are taken, and that would have to be specified. For an absolutely convergent sum there is no problem. If $A$ is uncountable, the sum can't be well-defined and finite unless all but countably many $f(alpha)$ are $0$.
add a comment |
Absolutely! See https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation.
Really, the main purpose of using integers to index is because it's fairly intuitive but really any way of distinguishing different elements of a list will work (especially since addition will (generally) be commutative over the set of numbers so even the ordering of the elements is irrelevant).
An index set (while describing ways to index sets in a union rather than elements to be summed) provides a nice analogy
(see https://planetmath.org/indexingset)
Also, it's really often inconvenient to limit ourselves to plain old integer indexing.
More abstract notation is generally more useful.
Say you wanted the sum of all primes under 4000. You could do a lot of work to first figure out how many primes there are under 4000 and use that to index them all but it'd be far easier to just say something like
$sum_{p:p=prime,p<4000} p$
New contributor
add a comment |
As a more practical answer,
if you want the
index of summation
to increment by a constant
non-integer value,
you could write
$sum_{x=0 by .01}^1 f(x)
$.
However,
both symbolically and numerically
I would write this as
$sum_{n=0}^{100} f(n/100)
$.
The numerical reason is that
if the increment is not
representable exactly
($0.01$ is not in binary floating point),
the loop may execute
an extra or one less time
than expected.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062040%2findex-of-summation-integer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
You will have obvious issues if you are attempting an uncountable sum of non-zero values, but otherwise there is no greater difficulty than sums over an integer index
Here is an example:
$$sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k = frac{zeta(k-1)}{zeta(k)}$$ where $frac a b$ is a rational expressed in lowest terms and real $k gt 2$
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
1
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
add a comment |
You will have obvious issues if you are attempting an uncountable sum of non-zero values, but otherwise there is no greater difficulty than sums over an integer index
Here is an example:
$$sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k = frac{zeta(k-1)}{zeta(k)}$$ where $frac a b$ is a rational expressed in lowest terms and real $k gt 2$
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
1
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
add a comment |
You will have obvious issues if you are attempting an uncountable sum of non-zero values, but otherwise there is no greater difficulty than sums over an integer index
Here is an example:
$$sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k = frac{zeta(k-1)}{zeta(k)}$$ where $frac a b$ is a rational expressed in lowest terms and real $k gt 2$
You will have obvious issues if you are attempting an uncountable sum of non-zero values, but otherwise there is no greater difficulty than sums over an integer index
Here is an example:
$$sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k = frac{zeta(k-1)}{zeta(k)}$$ where $frac a b$ is a rational expressed in lowest terms and real $k gt 2$
answered 1 hour ago
Henry
98.3k475161
98.3k475161
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
1
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
add a comment |
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
1
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
I get $zeta(k-1)$ for the sum. Where is my mistake? $begin{array}\ sum_{frac{a}{b} in mathbb{Q} cap (0,1]} left(frac{1}{b}right)^k &=sum_{n=1}^{infty} sum_{j=1}^n (1/n)^k\ &=sum_{n=1}^{infty} (1/n)^ksum_{j=1}^n 1\ &=sum_{n=1}^{infty} (1/n)^k n\ &=sum_{n=1}^{infty} (1/n)^{k-1}\ &=zeta(k-1)\ end{array} $
– marty cohen
1 hour ago
1
1
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
@martycohen Have you included four cases of $(1/4)^k$ in your sum? There should only be two for $frac14$ and $frac34$, as $frac24=frac12$ and $frac44=frac11$ and so have already been included as $(1/2)^k$ and $(1/1)^k$
– Henry
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
Aha! I included all fractions, not just lowest terms. So that $n$ in the third line should be $phi(n)$. Thanks.
– marty cohen
1 hour ago
add a comment |
The "index" of summation, the way I'm interpreting your question, corresponds to an enumeration of the elements of the set over which you are summing. For example, if you want to add the numbers $x_{1},...,x_{n}$, then you would write
$$sum_{k=1}^{n}x_{k}$$
You can also think of this as
$$sum_{xin S}x$$
where $S={x_{1},...,x_{n}}$.
However, there are sets which are not countable - this means the elements of the set are not in one-to-one correspondence with the set of integers. For example, you can take the sum of every real number in $[0,1]$, which you could write as
$$sum_{xin [0,1]}x$$
The problem is that because this set is uncountable, so there's no natural ordering for which to add these numbers. And in this case the sum is infinite. However if you know that a sum
$$sum_{xin S}x<infty$$
then, even if $S$ is uncountable, this can be rewritten as a sum over a countable set.
add a comment |
The "index" of summation, the way I'm interpreting your question, corresponds to an enumeration of the elements of the set over which you are summing. For example, if you want to add the numbers $x_{1},...,x_{n}$, then you would write
$$sum_{k=1}^{n}x_{k}$$
You can also think of this as
$$sum_{xin S}x$$
where $S={x_{1},...,x_{n}}$.
However, there are sets which are not countable - this means the elements of the set are not in one-to-one correspondence with the set of integers. For example, you can take the sum of every real number in $[0,1]$, which you could write as
$$sum_{xin [0,1]}x$$
The problem is that because this set is uncountable, so there's no natural ordering for which to add these numbers. And in this case the sum is infinite. However if you know that a sum
$$sum_{xin S}x<infty$$
then, even if $S$ is uncountable, this can be rewritten as a sum over a countable set.
add a comment |
The "index" of summation, the way I'm interpreting your question, corresponds to an enumeration of the elements of the set over which you are summing. For example, if you want to add the numbers $x_{1},...,x_{n}$, then you would write
$$sum_{k=1}^{n}x_{k}$$
You can also think of this as
$$sum_{xin S}x$$
where $S={x_{1},...,x_{n}}$.
However, there are sets which are not countable - this means the elements of the set are not in one-to-one correspondence with the set of integers. For example, you can take the sum of every real number in $[0,1]$, which you could write as
$$sum_{xin [0,1]}x$$
The problem is that because this set is uncountable, so there's no natural ordering for which to add these numbers. And in this case the sum is infinite. However if you know that a sum
$$sum_{xin S}x<infty$$
then, even if $S$ is uncountable, this can be rewritten as a sum over a countable set.
The "index" of summation, the way I'm interpreting your question, corresponds to an enumeration of the elements of the set over which you are summing. For example, if you want to add the numbers $x_{1},...,x_{n}$, then you would write
$$sum_{k=1}^{n}x_{k}$$
You can also think of this as
$$sum_{xin S}x$$
where $S={x_{1},...,x_{n}}$.
However, there are sets which are not countable - this means the elements of the set are not in one-to-one correspondence with the set of integers. For example, you can take the sum of every real number in $[0,1]$, which you could write as
$$sum_{xin [0,1]}x$$
The problem is that because this set is uncountable, so there's no natural ordering for which to add these numbers. And in this case the sum is infinite. However if you know that a sum
$$sum_{xin S}x<infty$$
then, even if $S$ is uncountable, this can be rewritten as a sum over a countable set.
answered 1 hour ago
pwerth
1,747411
1,747411
add a comment |
add a comment |
Normally yes, although it can be generalized to members of enumerable sets, for example, instead of writing
$$sum_{i=0}^N f(x_i)$$
you can simply write
$$sum_{xin A} f(x)$$
where $A$ is the set over which summation is done. This is very common simplification of notation.
What you are probably asking is, can they be noninteger real numbers... the answer is: those are not sums in the same sense, but people have generalized summation to noninteger indices. You can look up summability calculus, it's a beautiful theory, although I do not know what your mathematical background is.
add a comment |
Normally yes, although it can be generalized to members of enumerable sets, for example, instead of writing
$$sum_{i=0}^N f(x_i)$$
you can simply write
$$sum_{xin A} f(x)$$
where $A$ is the set over which summation is done. This is very common simplification of notation.
What you are probably asking is, can they be noninteger real numbers... the answer is: those are not sums in the same sense, but people have generalized summation to noninteger indices. You can look up summability calculus, it's a beautiful theory, although I do not know what your mathematical background is.
add a comment |
Normally yes, although it can be generalized to members of enumerable sets, for example, instead of writing
$$sum_{i=0}^N f(x_i)$$
you can simply write
$$sum_{xin A} f(x)$$
where $A$ is the set over which summation is done. This is very common simplification of notation.
What you are probably asking is, can they be noninteger real numbers... the answer is: those are not sums in the same sense, but people have generalized summation to noninteger indices. You can look up summability calculus, it's a beautiful theory, although I do not know what your mathematical background is.
Normally yes, although it can be generalized to members of enumerable sets, for example, instead of writing
$$sum_{i=0}^N f(x_i)$$
you can simply write
$$sum_{xin A} f(x)$$
where $A$ is the set over which summation is done. This is very common simplification of notation.
What you are probably asking is, can they be noninteger real numbers... the answer is: those are not sums in the same sense, but people have generalized summation to noninteger indices. You can look up summability calculus, it's a beautiful theory, although I do not know what your mathematical background is.
answered 1 hour ago
orion
13k11836
13k11836
add a comment |
add a comment |
Sums over non-integer indices are actually quite common. Of course the notation must make it clear what indices are being used. But you sometimes see expressions such as
$$ sum_{alpha in A} f(alpha) $$
where $A$ is some set (not necessarily of integers).
It should be noted that if $A$ is infinite, conditionally convergent sums will depend on the order in which the terms are taken, and that would have to be specified. For an absolutely convergent sum there is no problem. If $A$ is uncountable, the sum can't be well-defined and finite unless all but countably many $f(alpha)$ are $0$.
add a comment |
Sums over non-integer indices are actually quite common. Of course the notation must make it clear what indices are being used. But you sometimes see expressions such as
$$ sum_{alpha in A} f(alpha) $$
where $A$ is some set (not necessarily of integers).
It should be noted that if $A$ is infinite, conditionally convergent sums will depend on the order in which the terms are taken, and that would have to be specified. For an absolutely convergent sum there is no problem. If $A$ is uncountable, the sum can't be well-defined and finite unless all but countably many $f(alpha)$ are $0$.
add a comment |
Sums over non-integer indices are actually quite common. Of course the notation must make it clear what indices are being used. But you sometimes see expressions such as
$$ sum_{alpha in A} f(alpha) $$
where $A$ is some set (not necessarily of integers).
It should be noted that if $A$ is infinite, conditionally convergent sums will depend on the order in which the terms are taken, and that would have to be specified. For an absolutely convergent sum there is no problem. If $A$ is uncountable, the sum can't be well-defined and finite unless all but countably many $f(alpha)$ are $0$.
Sums over non-integer indices are actually quite common. Of course the notation must make it clear what indices are being used. But you sometimes see expressions such as
$$ sum_{alpha in A} f(alpha) $$
where $A$ is some set (not necessarily of integers).
It should be noted that if $A$ is infinite, conditionally convergent sums will depend on the order in which the terms are taken, and that would have to be specified. For an absolutely convergent sum there is no problem. If $A$ is uncountable, the sum can't be well-defined and finite unless all but countably many $f(alpha)$ are $0$.
edited 1 hour ago
answered 1 hour ago
Robert Israel
318k23208457
318k23208457
add a comment |
add a comment |
Absolutely! See https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation.
Really, the main purpose of using integers to index is because it's fairly intuitive but really any way of distinguishing different elements of a list will work (especially since addition will (generally) be commutative over the set of numbers so even the ordering of the elements is irrelevant).
An index set (while describing ways to index sets in a union rather than elements to be summed) provides a nice analogy
(see https://planetmath.org/indexingset)
Also, it's really often inconvenient to limit ourselves to plain old integer indexing.
More abstract notation is generally more useful.
Say you wanted the sum of all primes under 4000. You could do a lot of work to first figure out how many primes there are under 4000 and use that to index them all but it'd be far easier to just say something like
$sum_{p:p=prime,p<4000} p$
New contributor
add a comment |
Absolutely! See https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation.
Really, the main purpose of using integers to index is because it's fairly intuitive but really any way of distinguishing different elements of a list will work (especially since addition will (generally) be commutative over the set of numbers so even the ordering of the elements is irrelevant).
An index set (while describing ways to index sets in a union rather than elements to be summed) provides a nice analogy
(see https://planetmath.org/indexingset)
Also, it's really often inconvenient to limit ourselves to plain old integer indexing.
More abstract notation is generally more useful.
Say you wanted the sum of all primes under 4000. You could do a lot of work to first figure out how many primes there are under 4000 and use that to index them all but it'd be far easier to just say something like
$sum_{p:p=prime,p<4000} p$
New contributor
add a comment |
Absolutely! See https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation.
Really, the main purpose of using integers to index is because it's fairly intuitive but really any way of distinguishing different elements of a list will work (especially since addition will (generally) be commutative over the set of numbers so even the ordering of the elements is irrelevant).
An index set (while describing ways to index sets in a union rather than elements to be summed) provides a nice analogy
(see https://planetmath.org/indexingset)
Also, it's really often inconvenient to limit ourselves to plain old integer indexing.
More abstract notation is generally more useful.
Say you wanted the sum of all primes under 4000. You could do a lot of work to first figure out how many primes there are under 4000 and use that to index them all but it'd be far easier to just say something like
$sum_{p:p=prime,p<4000} p$
New contributor
Absolutely! See https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation.
Really, the main purpose of using integers to index is because it's fairly intuitive but really any way of distinguishing different elements of a list will work (especially since addition will (generally) be commutative over the set of numbers so even the ordering of the elements is irrelevant).
An index set (while describing ways to index sets in a union rather than elements to be summed) provides a nice analogy
(see https://planetmath.org/indexingset)
Also, it's really often inconvenient to limit ourselves to plain old integer indexing.
More abstract notation is generally more useful.
Say you wanted the sum of all primes under 4000. You could do a lot of work to first figure out how many primes there are under 4000 and use that to index them all but it'd be far easier to just say something like
$sum_{p:p=prime,p<4000} p$
New contributor
New contributor
answered 1 hour ago
Cardioid_Ass_22
236
236
New contributor
New contributor
add a comment |
add a comment |
As a more practical answer,
if you want the
index of summation
to increment by a constant
non-integer value,
you could write
$sum_{x=0 by .01}^1 f(x)
$.
However,
both symbolically and numerically
I would write this as
$sum_{n=0}^{100} f(n/100)
$.
The numerical reason is that
if the increment is not
representable exactly
($0.01$ is not in binary floating point),
the loop may execute
an extra or one less time
than expected.
add a comment |
As a more practical answer,
if you want the
index of summation
to increment by a constant
non-integer value,
you could write
$sum_{x=0 by .01}^1 f(x)
$.
However,
both symbolically and numerically
I would write this as
$sum_{n=0}^{100} f(n/100)
$.
The numerical reason is that
if the increment is not
representable exactly
($0.01$ is not in binary floating point),
the loop may execute
an extra or one less time
than expected.
add a comment |
As a more practical answer,
if you want the
index of summation
to increment by a constant
non-integer value,
you could write
$sum_{x=0 by .01}^1 f(x)
$.
However,
both symbolically and numerically
I would write this as
$sum_{n=0}^{100} f(n/100)
$.
The numerical reason is that
if the increment is not
representable exactly
($0.01$ is not in binary floating point),
the loop may execute
an extra or one less time
than expected.
As a more practical answer,
if you want the
index of summation
to increment by a constant
non-integer value,
you could write
$sum_{x=0 by .01}^1 f(x)
$.
However,
both symbolically and numerically
I would write this as
$sum_{n=0}^{100} f(n/100)
$.
The numerical reason is that
if the increment is not
representable exactly
($0.01$ is not in binary floating point),
the loop may execute
an extra or one less time
than expected.
answered 1 hour ago
marty cohen
72.6k549127
72.6k549127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062040%2findex-of-summation-integer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Sure, you can sum over any set you like. It turns out that if you sum over something uncountable, the sum will diverge unless all but countably many of the terms are zero, but you can still sum over them.
– user3482749
40 mins ago