Can I hatch this region in any way?
Can I hatch this region in any way?
Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]
EDIT
I want to define a region of a circle, because I want to determine the area of this region...
graphics
add a comment |
Can I hatch this region in any way?
Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]
EDIT
I want to define a region of a circle, because I want to determine the area of this region...
graphics
For what purpose?
– Alex Trounev
2 hours ago
add a comment |
Can I hatch this region in any way?
Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]
EDIT
I want to define a region of a circle, because I want to determine the area of this region...
graphics
Can I hatch this region in any way?
Graphics[{
Circle[{0,0},10,{ArcCos[5/10],ArcCos[5Sqrt[3]/10]}],
Line[{{5Sqrt[3],5},{5Sqrt[3],-5}}],
Circle[{0,0},10,{-ArcCos[5/10],-ArcCos[5Sqrt[3]/10]}],
Line[{{5,-5Sqrt[3]},{5,5Sqrt[3]}}]
},
Axes->True,
AxesOrigin->{0,0}
]
EDIT
I want to define a region of a circle, because I want to determine the area of this region...
graphics
graphics
edited 1 hour ago
asked 2 hours ago
LCarvalho
5,58542885
5,58542885
For what purpose?
– Alex Trounev
2 hours ago
add a comment |
For what purpose?
– Alex Trounev
2 hours ago
For what purpose?
– Alex Trounev
2 hours ago
For what purpose?
– Alex Trounev
2 hours ago
add a comment |
3 Answers
3
active
oldest
votes
impreg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N @ Area @ impreg
52.3599
Show[Graphics[{Gray, Circle[{0, 0}, 10]}],
RegionPlot[impreg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red]]
RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, -12, 12}, {y, -12, 12},
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]
same picture
add a comment |
poly = MeshPrimitives[
BoundaryDiscretizeRegion[
RegionIntersection[
Disk,
HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
],
MaxCellMeasure -> {1 -> 0.001}
],
2
][[1]];
Area[poly]
0.523599
Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]
add a comment |
Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick,
Circle[{0, 0}, 10, {π/6, π/3}],
Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]
Therefore we can use the following.
reg1 = Disk[{0, 0}, 10];
reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
Area@RegionIntersection[reg1, reg2]
$frac{50 pi }{3}$
You can also choose reg2 as
reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];
Or
reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188788%2fcan-i-hatch-this-region-in-any-way%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
impreg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N @ Area @ impreg
52.3599
Show[Graphics[{Gray, Circle[{0, 0}, 10]}],
RegionPlot[impreg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red]]
RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, -12, 12}, {y, -12, 12},
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]
same picture
add a comment |
impreg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N @ Area @ impreg
52.3599
Show[Graphics[{Gray, Circle[{0, 0}, 10]}],
RegionPlot[impreg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red]]
RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, -12, 12}, {y, -12, 12},
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]
same picture
add a comment |
impreg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N @ Area @ impreg
52.3599
Show[Graphics[{Gray, Circle[{0, 0}, 10]}],
RegionPlot[impreg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red]]
RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, -12, 12}, {y, -12, 12},
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]
same picture
impreg = ImplicitRegion[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, y}];
N @ Area @ impreg
52.3599
Show[Graphics[{Gray, Circle[{0, 0}, 10]}],
RegionPlot[impreg, MeshFunctions -> {# + #2 &, # - #2 &},
Mesh -> {50, 50}, MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red]]
RegionPlot[x^2 + y^2 <= 100 && 5 <= x <= 5 Sqrt[3], {x, -12, 12}, {y, -12, 12},
MeshFunctions -> {# + #2 &, # - #2 &}, Mesh -> {50, 50},
MeshShading -> None, PlotStyle -> None, BoundaryStyle -> Red,
PlotPoints -> 90, Epilog -> {Gray, Scale[Circle, 10]},
Frame -> False]
same picture
edited 1 hour ago
answered 1 hour ago
kglr
177k9198405
177k9198405
add a comment |
add a comment |
poly = MeshPrimitives[
BoundaryDiscretizeRegion[
RegionIntersection[
Disk,
HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
],
MaxCellMeasure -> {1 -> 0.001}
],
2
][[1]];
Area[poly]
0.523599
Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]
add a comment |
poly = MeshPrimitives[
BoundaryDiscretizeRegion[
RegionIntersection[
Disk,
HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
],
MaxCellMeasure -> {1 -> 0.001}
],
2
][[1]];
Area[poly]
0.523599
Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]
add a comment |
poly = MeshPrimitives[
BoundaryDiscretizeRegion[
RegionIntersection[
Disk,
HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
],
MaxCellMeasure -> {1 -> 0.001}
],
2
][[1]];
Area[poly]
0.523599
Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]
poly = MeshPrimitives[
BoundaryDiscretizeRegion[
RegionIntersection[
Disk,
HalfPlane[{{5/10, 0}, {5/10, 1}}, {1, 0}],
HalfPlane[{{5 Sqrt[3]/10, 0}, {5 Sqrt[3]/10, 1}}, {-1, 0}]
],
MaxCellMeasure -> {1 -> 0.001}
],
2
][[1]];
Area[poly]
0.523599
Graphics[{Circle, Gray, EdgeForm[{Thick, Black}], poly}]
answered 1 hour ago
Henrik Schumacher
49k467139
49k467139
add a comment |
add a comment |
Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick,
Circle[{0, 0}, 10, {π/6, π/3}],
Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]
Therefore we can use the following.
reg1 = Disk[{0, 0}, 10];
reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
Area@RegionIntersection[reg1, reg2]
$frac{50 pi }{3}$
You can also choose reg2 as
reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];
Or
reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];
add a comment |
Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick,
Circle[{0, 0}, 10, {π/6, π/3}],
Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]
Therefore we can use the following.
reg1 = Disk[{0, 0}, 10];
reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
Area@RegionIntersection[reg1, reg2]
$frac{50 pi }{3}$
You can also choose reg2 as
reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];
Or
reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];
add a comment |
Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick,
Circle[{0, 0}, 10, {π/6, π/3}],
Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]
Therefore we can use the following.
reg1 = Disk[{0, 0}, 10];
reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
Area@RegionIntersection[reg1, reg2]
$frac{50 pi }{3}$
You can also choose reg2 as
reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];
Or
reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];
Graphics[{Red, Opacity@0.7, Disk[{0, 0}, 10], Opacity@1, Blue, Thick,
Circle[{0, 0}, 10, {π/6, π/3}],
Circle[{0, 0}, 10, {-(π/6), -(π/3)}], Green, Opacity@0.6,
Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/6],
10 Sin[π/3]}]}, Axes -> True, AxesOrigin -> {0, 0}]
Therefore we can use the following.
reg1 = Disk[{0, 0}, 10];
reg2 = Rectangle[{10 Cos[π/3], -10 Sin[π/3]}, {10 Cos[π/ 6], 10 Sin[π/3]}];
Area@RegionIntersection[reg1, reg2]
$frac{50 pi }{3}$
You can also choose reg2 as
reg2 = Rectangle[{5, -5 Sqrt[3]}, {5 Sqrt[3], 5 Sqrt[3]}];
Or
reg2 = Rectangle[{5, -10}, {5 Sqrt[3], 10}];
edited 33 mins ago
answered 42 mins ago
Okkes Dulgerci
4,0451816
4,0451816
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188788%2fcan-i-hatch-this-region-in-any-way%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
For what purpose?
– Alex Trounev
2 hours ago