Waveform








Sine, square, triangle, and sawtooth waveforms




A sine, square, and sawtooth wave at 440 Hz




A composite waveform that is shaped like a teardrop.




A waveform generated by a synthesizer


A waveform is a variable that varies with time, usually representing a voltage or current.[1]


Waveforms are conventionally graphed with time on the horizontal axis.


In electronics, an oscilloscope can be used to visualize a waveform on a screen. A waveform can be depicted by a graph that shows the changes in a recorded signal's amplitude over the duration of recording.[2] The amplitude of the signal is measured on the y{displaystyle y}y-axis (vertical), and time on the x{displaystyle x}x-axis (horizontal).[2]




Contents






  • 1 Examples


  • 2 See also


  • 3 References


  • 4 Further reading


  • 5 External links





Examples


Simple examples of periodic waveforms include the following, where t{displaystyle t}t is time, λ{displaystyle lambda }lambda is wavelength, a{displaystyle a}a is amplitude and ϕ{displaystyle phi }phi is phase:




  • Sine wave(t,λ,a,ϕ)=asin⁡t−ϕλ{displaystyle (t,lambda ,a,phi )=asin {frac {2pi t-phi }{lambda }}}{displaystyle (t,lambda ,a,phi )=asin {frac {2pi t-phi }{lambda }}}. The amplitude of the waveform follows a trigonometric sine function with respect to time.


  • Square wave(t,λ,a,ϕ)={a,(t−ϕ)modλ<duty−a,otherwise{displaystyle (t,lambda ,a,phi )={begin{cases}a,&(t-phi ){bmod {lambda }}<{text{duty}}\-a,&{text{otherwise}}end{cases}}}{displaystyle (t,lambda ,a,phi )={begin{cases}a,&(t-phi ){bmod {lambda }}<{text{duty}}\-a,&{text{otherwise}}end{cases}}}. This waveform is commonly used to represent digital information. A square wave of constant period contains odd harmonics that decrease at −6 dB/octave.


  • Triangle wave(t,λ,a,ϕ)=2aπarcsin⁡sin⁡t−ϕλ{displaystyle (t,lambda ,a,phi )={frac {2a}{pi }}arcsin sin {frac {2pi t-phi }{lambda }}}{displaystyle (t,lambda ,a,phi )={frac {2a}{pi }}arcsin sin {frac {2pi t-phi }{lambda }}}. It contains odd harmonics that decrease at −12 dB/octave.


  • Sawtooth wave(t,λ,a,ϕ)=2aπarctan⁡tan⁡t−ϕ{displaystyle (t,lambda ,a,phi )={frac {2a}{pi }}arctan tan {frac {2pi t-phi }{2lambda }}}{displaystyle (t,lambda ,a,phi )={frac {2a}{pi }}arctan tan {frac {2pi t-phi }{2lambda }}}. This looks like the teeth of a saw. Found often in time bases for display scanning. It is used as the starting point for subtractive synthesis, as a sawtooth wave of constant period contains odd and even harmonics that decrease at −6 dB/octave.


The Fourier series describes the decomposition of periodic waveforms, such that any periodic waveform can be formed by the sum of a (possibly infinite) set of fundamental and harmonic components. Finite-energy non-periodic waveforms can be analyzed into sinusoids by the Fourier transform.


Other periodic waveforms are often called composite waveforms and can often be described as a combination of a number of sinusoidal waves or other basis functions added together.



See also



  • AC waveform

  • Arbitrary waveform generator

  • Crest factor

  • Frequency domain

  • Phase offset modulation

  • Spectrum analyzer

  • Waveform monitor

  • Waveform viewer

  • Wave packet



References





  1. ^ David Crecraft, David Gorham, Electronics, 2nd ed., .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0748770364, CRC Press, 2002, p. 62



  2. ^ ab "Waveform Definition". techterms.com. Retrieved 2015-12-09.




Further reading



  • Yuchuan Wei, Qishan Zhang. Common Waveform Analysis: A New And Practical Generalization of Fourier Analysis. Springer US, Aug 31, 2000

  • Hao He, Jian Li, and Petre Stoica. Waveform design for active sensing systems: a computational approach. Cambridge University Press, 2012.

  • Solomon W. Golomb, and Guang Gong. Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press, 2005.

  • Jayant, Nuggehally S and Noll, Peter. Digital coding of waveforms: principles and applications to speech and video. Englewood Cliffs, NJ, 1984.

  • M. Soltanalian. Signal Design for Active Sensing and Communications. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.

  • Nadav Levanon, and Eli Mozeson. Radar signals. Wiley. com, 2004.

  • Jian Li, and Petre Stoica, eds. Robust adaptive beamforming. New Jersey: John Wiley, 2006.

  • Fulvio Gini, Antonio De Maio, and Lee Patton, eds. Waveform design and diversity for advanced radar systems. Institution of engineering and technology, 2012.

  • John J. Benedetto, Ioannis Konstantinidis, and Muralidhar Rangaswamy. "Phase-coded waveforms and their design." IEEE Signal Processing Magazine, 26.1 (2009): 22-31.



External links







  • Collection of single cycle waveforms sampled from various sources









Popular posts from this blog

Eastern Orthodox Church

Zagreb

Understanding the information contained in the Deep Space Network XML data?