Distance-regular graph


































































Graph families defined by their automorphisms

distance-transitive


distance-regular


strongly regular




symmetric (arc-transitive)


t-transitive, t ≥ 2


skew-symmetric






(if connected)
vertex- and edge-transitive


edge-transitive and regular


edge-transitive






vertex-transitive


regular


(if bipartite)
biregular




Cayley graph


zero-symmetric


asymmetric

In mathematics, a distance-regular graph is a regular graph such that for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and i = d(v, w).


Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group.




Contents






  • 1 Intersection arrays


    • 1.1 Cospectral distance-regular graphs




  • 2 Properties


    • 2.1 Graph-theoretic properties


    • 2.2 Spectral properties




  • 3 Examples


  • 4 Classification of distance-regular graphs


    • 4.1 Cubic distance-regular graphs




  • 5 References


  • 6 Further reading





Intersection arrays


It turns out that a graph G{displaystyle G}G of diameter d{displaystyle d}d is distance-regular if and only if there is an array of integers {b0,b1,⋯,bd−1;c1,⋯,cd}{displaystyle {b_{0},b_{1},cdots ,b_{d-1};c_{1},cdots ,c_{d}}}{displaystyle {b_{0},b_{1},cdots ,b_{d-1};c_{1},cdots ,c_{d}}} such that for all 1≤j≤d{displaystyle 1leq jleq d}{displaystyle 1leq jleq d}, bj{displaystyle b_{j}}{displaystyle b_{j}} gives the number of neighbours of u{displaystyle u}{displaystyle u} at distance j+1{displaystyle j+1}{displaystyle j+1} from v{displaystyle v}v and cj{displaystyle c_{j}}{displaystyle c_{j}} gives the number of neighbours of u{displaystyle u}{displaystyle u} at distance j−1{displaystyle j-1}{displaystyle j-1} from v{displaystyle v}v for any pair of vertices u{displaystyle u}{displaystyle u} and v{displaystyle v}v at distance j{displaystyle j}j on G{displaystyle G}G. The array of integers characterizing a distance-regular graph is known as its intersection array.



Cospectral distance-regular graphs


A pair of connected distance-regular graphs are cospectral if and only if they have the same intersection array.


A distance-regular graph is disconnected if and only if it is a disjoint union of cospectral distance-regular graphs.



Properties


Suppose G{displaystyle G}G is a connected distance-regular graph of valency k{displaystyle k}k with intersection array {b0,b1,⋯,bd−1;c1,⋯,cd}{displaystyle {b_{0},b_{1},cdots ,b_{d-1};c_{1},cdots ,c_{d}}}{displaystyle {b_{0},b_{1},cdots ,b_{d-1};c_{1},cdots ,c_{d}}}. For all 0≤j≤d{displaystyle 0leq jleq d}{displaystyle 0leq jleq d}: let Gj{displaystyle G_{j}}{displaystyle G_{j}} denote the kj{displaystyle k_{j}}{displaystyle k_{j}}-regular graph with adjacency matrix Aj{displaystyle A_{j}}{displaystyle A_{j}} formed by relating pairs of vertices on G{displaystyle G}G at distance j{displaystyle j}j, and let aj{displaystyle a_{j}}a_{j} denote the number of neighbours of u{displaystyle u}{displaystyle u} at distance j{displaystyle j}j from v{displaystyle v}v for any pair of vertices u{displaystyle u}{displaystyle u} and v{displaystyle v}v at distance j{displaystyle j}j on G{displaystyle G}G.



Graph-theoretic properties




  • kj+1kj=bjcj+1{displaystyle {frac {k_{j+1}}{k_{j}}}={frac {b_{j}}{c_{j+1}}}}{displaystyle {frac {k_{j+1}}{k_{j}}}={frac {b_{j}}{c_{j+1}}}} for all 0≤j<d{displaystyle 0leq j<d}{displaystyle 0leq j<d}.


  • b0>b1≥bd−1>0{displaystyle b_{0}>b_{1}geq cdots geq b_{d-1}>0}{displaystyle b_{0}>b_{1}geq cdots geq b_{d-1}>0} and 1=c1≤cd≤b0{displaystyle 1=c_{1}leq cdots leq c_{d}leq b_{0}}{displaystyle 1=c_{1}leq cdots leq c_{d}leq b_{0}}.



Spectral properties




  • k≤12(m−1)(m+2){displaystyle kleq {frac {1}{2}}(m-1)(m+2)}{displaystyle kleq {frac {1}{2}}(m-1)(m+2)} for any eigenvalue multiplicity m>1{displaystyle m>1}m>1 of G{displaystyle G}G, unless G{displaystyle G}G is a complete multipartite graph.


  • d≤3m−4{displaystyle dleq 3m-4}{displaystyle dleq 3m-4} for any eigenvalue multiplicity m>1{displaystyle m>1}m>1 of G{displaystyle G}G, unless G{displaystyle G}G is a cycle graph or a complete multipartite graph.


  • λk}{displaystyle lambda in {pm k}}{displaystyle lambda in {pm k}} if λ{displaystyle lambda }lambda is a simple eigenvalue of G{displaystyle G}G.


  • G{displaystyle G}G has d+1{displaystyle d+1}{displaystyle d+1} distinct eigenvalues.


If G{displaystyle G}G is strongly regular, then n≤4m−1{displaystyle nleq 4m-1}{displaystyle nleq 4m-1} and k≤2m−1{displaystyle kleq 2m-1}{displaystyle kleq 2m-1}.



Examples


Some first examples of distance-regular graphs include:



  • The complete graphs.

  • The cycles graphs.

  • The odd graphs.

  • The Moore graphs.

  • The collinearity graph of a regular near polygon.

  • The Wells graph and the Sylvester graph.



  • Strongly regular graphs of diameter 2{displaystyle 2}2.



Classification of distance-regular graphs


There are only finitely many distinct connected distance-regular graphs of any given valency k>2{displaystyle k>2}{displaystyle k>2}.[1]


Similarly, there are only finitely many distinct connected distance-regular graphs with any given eigenvalue multiplicity m>2{displaystyle m>2}m > 2[2] (with the exception of the complete multipartite graphs).



Cubic distance-regular graphs


The cubic distance-regular graphs have been completely classified.


The 13 distinct cubic distance-regular graphs are K4 (or tetrahedron), K3,3, the Petersen graph, the cube, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte–Coxeter graph, the dodecahedron, the Desargues graph, Tutte 12-cage, the Biggs–Smith graph, and the Foster graph.



References





  1. ^ Bang, S.; Dubickas, A.; Koolen, J. H.; Moulton, V. (2015-01-10). "There are only finitely many distance-regular graphs of fixed valency greater than two". Advances in Mathematics. 269 (Supplement C): 1–55. arXiv:0909.5253. doi:10.1016/j.aim.2014.09.025..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Godsil, C. D. (1988-12-01). "Bounding the diameter of distance-regular graphs". Combinatorica. 8 (4): 333–343. doi:10.1007/BF02189090. ISSN 0209-9683.




Further reading



  • Godsil, C. D. (1993). Algebraic combinatorics. Chapman and Hall Mathematics Series. New York: Chapman and Hall. pp. xvi+362. ISBN 0-412-04131-6. MR 1220704.



Popular posts from this blog

Eastern Orthodox Church

Zagreb

Understanding the information contained in the Deep Space Network XML data?