Infinite Summation Question (Euler's Identity)
So one of my past exam papers has the question:
Show:
$sum_{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$
My working:
$e^{intheta} = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^{intheta}$
Thus we get: $mathbb I(sum_{n=0}^infty (frac{e^{itheta}}{2})^n)$
Using the summation formula for infinite geometric series:
$=frac{1}{1-frac{e^{itheta}}{2}}$
And after multiplying by the complex conjugate I get the imaginary part to be
$= frac{2sin(theta)}{5-4cos(theta)}$
Any help would be great, thanks!
complex-numbers summation
add a comment |
So one of my past exam papers has the question:
Show:
$sum_{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$
My working:
$e^{intheta} = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^{intheta}$
Thus we get: $mathbb I(sum_{n=0}^infty (frac{e^{itheta}}{2})^n)$
Using the summation formula for infinite geometric series:
$=frac{1}{1-frac{e^{itheta}}{2}}$
And after multiplying by the complex conjugate I get the imaginary part to be
$= frac{2sin(theta)}{5-4cos(theta)}$
Any help would be great, thanks!
complex-numbers summation
add a comment |
So one of my past exam papers has the question:
Show:
$sum_{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$
My working:
$e^{intheta} = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^{intheta}$
Thus we get: $mathbb I(sum_{n=0}^infty (frac{e^{itheta}}{2})^n)$
Using the summation formula for infinite geometric series:
$=frac{1}{1-frac{e^{itheta}}{2}}$
And after multiplying by the complex conjugate I get the imaginary part to be
$= frac{2sin(theta)}{5-4cos(theta)}$
Any help would be great, thanks!
complex-numbers summation
So one of my past exam papers has the question:
Show:
$sum_{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$
My working:
$e^{intheta} = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^{intheta}$
Thus we get: $mathbb I(sum_{n=0}^infty (frac{e^{itheta}}{2})^n)$
Using the summation formula for infinite geometric series:
$=frac{1}{1-frac{e^{itheta}}{2}}$
And after multiplying by the complex conjugate I get the imaginary part to be
$= frac{2sin(theta)}{5-4cos(theta)}$
Any help would be great, thanks!
complex-numbers summation
complex-numbers summation
asked 2 hours ago
PolynomialC
436
436
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$
The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058986%2finfinite-summation-question-eulers-identity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$
The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.
add a comment |
Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$
The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.
add a comment |
Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$
The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.
Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$
The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.
answered 1 hour ago
jmerry
1,69218
1,69218
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058986%2finfinite-summation-question-eulers-identity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown