A pattern in determinants of fibonacci numbers?
up vote
1
down vote
favorite
Let $F_n$ denote the $n$th Fibonacci number, adopting the convention $F_1=1$, $F_2=1$ and so on. Consider the $ntimes n$ matrix defined by
$$mathbf M_n:=begin{bmatrix}F_1&F_2&dots&F_n\F_{n+1}&F_{n+2}&dots&F_{2n}\vdots&vdots&ddots&vdots\F_{n^2-n+1}&F_{n^2-n+2}&dots&F_{n^2}end{bmatrix}.$$
I have the following conjecture:
Conjecture. For all integers $ngeq3$, $detmathbf M_n=0$.
I have used some Python code to test this conjecture for $n$ up to $9$, but I cannot go further. Note that $detmathbf M_1=detmathbf M_2=1$. Due to the elementary nature of this problem I have to assume that it has been discussed before, perhaps even on this site. But I couldn't find any reference on it, by Googling or searching here. Can someone shed light onto whether the conjecture is true, and a proof of it if so?
linear-algebra determinant fibonacci-numbers
add a comment |
up vote
1
down vote
favorite
Let $F_n$ denote the $n$th Fibonacci number, adopting the convention $F_1=1$, $F_2=1$ and so on. Consider the $ntimes n$ matrix defined by
$$mathbf M_n:=begin{bmatrix}F_1&F_2&dots&F_n\F_{n+1}&F_{n+2}&dots&F_{2n}\vdots&vdots&ddots&vdots\F_{n^2-n+1}&F_{n^2-n+2}&dots&F_{n^2}end{bmatrix}.$$
I have the following conjecture:
Conjecture. For all integers $ngeq3$, $detmathbf M_n=0$.
I have used some Python code to test this conjecture for $n$ up to $9$, but I cannot go further. Note that $detmathbf M_1=detmathbf M_2=1$. Due to the elementary nature of this problem I have to assume that it has been discussed before, perhaps even on this site. But I couldn't find any reference on it, by Googling or searching here. Can someone shed light onto whether the conjecture is true, and a proof of it if so?
linear-algebra determinant fibonacci-numbers
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $F_n$ denote the $n$th Fibonacci number, adopting the convention $F_1=1$, $F_2=1$ and so on. Consider the $ntimes n$ matrix defined by
$$mathbf M_n:=begin{bmatrix}F_1&F_2&dots&F_n\F_{n+1}&F_{n+2}&dots&F_{2n}\vdots&vdots&ddots&vdots\F_{n^2-n+1}&F_{n^2-n+2}&dots&F_{n^2}end{bmatrix}.$$
I have the following conjecture:
Conjecture. For all integers $ngeq3$, $detmathbf M_n=0$.
I have used some Python code to test this conjecture for $n$ up to $9$, but I cannot go further. Note that $detmathbf M_1=detmathbf M_2=1$. Due to the elementary nature of this problem I have to assume that it has been discussed before, perhaps even on this site. But I couldn't find any reference on it, by Googling or searching here. Can someone shed light onto whether the conjecture is true, and a proof of it if so?
linear-algebra determinant fibonacci-numbers
Let $F_n$ denote the $n$th Fibonacci number, adopting the convention $F_1=1$, $F_2=1$ and so on. Consider the $ntimes n$ matrix defined by
$$mathbf M_n:=begin{bmatrix}F_1&F_2&dots&F_n\F_{n+1}&F_{n+2}&dots&F_{2n}\vdots&vdots&ddots&vdots\F_{n^2-n+1}&F_{n^2-n+2}&dots&F_{n^2}end{bmatrix}.$$
I have the following conjecture:
Conjecture. For all integers $ngeq3$, $detmathbf M_n=0$.
I have used some Python code to test this conjecture for $n$ up to $9$, but I cannot go further. Note that $detmathbf M_1=detmathbf M_2=1$. Due to the elementary nature of this problem I have to assume that it has been discussed before, perhaps even on this site. But I couldn't find any reference on it, by Googling or searching here. Can someone shed light onto whether the conjecture is true, and a proof of it if so?
linear-algebra determinant fibonacci-numbers
linear-algebra determinant fibonacci-numbers
asked 33 mins ago
YiFan
1,6771314
1,6771314
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
Here's a hint: what's the relationship between $F_{k+1}+F_{k+2}$ and $F_{k+3}$? What does that say about the 1st, 2nd, and 3rd columns of this matrix?
add a comment |
up vote
1
down vote
The resolution is remarkably simple (many thanks to obscurans' answer for the hint!) By the definition of the Fibonacci numbers, $F_k+F_{k+1}=F_{k+2}$ for all $k$. If $ngeq3$ then these numbers are going to be in the first three columns of every row. Hence the first three rows are linearly dependent, so the determinant is $0$. It follows from this that any such sequence following a linear recurrence (of the form $F_{n}=aF_{n-1}+bF_{n-2}$, $a,b$ are constant), with possibly different starting terms, also satisfies the stated conjecture. In fact, this shows that all such matrices have rank $2$, with the only two linearly independent columns being the first two. If the linear recurrence is of higher order, say $m$, then the determinant is $0$ when $n>m$, and the rank of the matrix will be $m$.
1
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
Here's a hint: what's the relationship between $F_{k+1}+F_{k+2}$ and $F_{k+3}$? What does that say about the 1st, 2nd, and 3rd columns of this matrix?
add a comment |
up vote
4
down vote
Here's a hint: what's the relationship between $F_{k+1}+F_{k+2}$ and $F_{k+3}$? What does that say about the 1st, 2nd, and 3rd columns of this matrix?
add a comment |
up vote
4
down vote
up vote
4
down vote
Here's a hint: what's the relationship between $F_{k+1}+F_{k+2}$ and $F_{k+3}$? What does that say about the 1st, 2nd, and 3rd columns of this matrix?
Here's a hint: what's the relationship between $F_{k+1}+F_{k+2}$ and $F_{k+3}$? What does that say about the 1st, 2nd, and 3rd columns of this matrix?
answered 30 mins ago
obscurans
3185
3185
add a comment |
add a comment |
up vote
1
down vote
The resolution is remarkably simple (many thanks to obscurans' answer for the hint!) By the definition of the Fibonacci numbers, $F_k+F_{k+1}=F_{k+2}$ for all $k$. If $ngeq3$ then these numbers are going to be in the first three columns of every row. Hence the first three rows are linearly dependent, so the determinant is $0$. It follows from this that any such sequence following a linear recurrence (of the form $F_{n}=aF_{n-1}+bF_{n-2}$, $a,b$ are constant), with possibly different starting terms, also satisfies the stated conjecture. In fact, this shows that all such matrices have rank $2$, with the only two linearly independent columns being the first two. If the linear recurrence is of higher order, say $m$, then the determinant is $0$ when $n>m$, and the rank of the matrix will be $m$.
1
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
add a comment |
up vote
1
down vote
The resolution is remarkably simple (many thanks to obscurans' answer for the hint!) By the definition of the Fibonacci numbers, $F_k+F_{k+1}=F_{k+2}$ for all $k$. If $ngeq3$ then these numbers are going to be in the first three columns of every row. Hence the first three rows are linearly dependent, so the determinant is $0$. It follows from this that any such sequence following a linear recurrence (of the form $F_{n}=aF_{n-1}+bF_{n-2}$, $a,b$ are constant), with possibly different starting terms, also satisfies the stated conjecture. In fact, this shows that all such matrices have rank $2$, with the only two linearly independent columns being the first two. If the linear recurrence is of higher order, say $m$, then the determinant is $0$ when $n>m$, and the rank of the matrix will be $m$.
1
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
add a comment |
up vote
1
down vote
up vote
1
down vote
The resolution is remarkably simple (many thanks to obscurans' answer for the hint!) By the definition of the Fibonacci numbers, $F_k+F_{k+1}=F_{k+2}$ for all $k$. If $ngeq3$ then these numbers are going to be in the first three columns of every row. Hence the first three rows are linearly dependent, so the determinant is $0$. It follows from this that any such sequence following a linear recurrence (of the form $F_{n}=aF_{n-1}+bF_{n-2}$, $a,b$ are constant), with possibly different starting terms, also satisfies the stated conjecture. In fact, this shows that all such matrices have rank $2$, with the only two linearly independent columns being the first two. If the linear recurrence is of higher order, say $m$, then the determinant is $0$ when $n>m$, and the rank of the matrix will be $m$.
The resolution is remarkably simple (many thanks to obscurans' answer for the hint!) By the definition of the Fibonacci numbers, $F_k+F_{k+1}=F_{k+2}$ for all $k$. If $ngeq3$ then these numbers are going to be in the first three columns of every row. Hence the first three rows are linearly dependent, so the determinant is $0$. It follows from this that any such sequence following a linear recurrence (of the form $F_{n}=aF_{n-1}+bF_{n-2}$, $a,b$ are constant), with possibly different starting terms, also satisfies the stated conjecture. In fact, this shows that all such matrices have rank $2$, with the only two linearly independent columns being the first two. If the linear recurrence is of higher order, say $m$, then the determinant is $0$ when $n>m$, and the rank of the matrix will be $m$.
edited 13 mins ago
answered 22 mins ago
YiFan
1,6771314
1,6771314
1
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
add a comment |
1
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
1
1
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
One note: the matrix will have rank $leq$ the order of the linear recurrence, which is not necessarily 2.
– obscurans
17 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023500%2fa-pattern-in-determinants-of-fibonacci-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown