What precisely does it mean for “information to not travel faster than the speed of light”?











up vote
14
down vote

favorite












This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.




Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.




If this is impossible, or if nobody knows how to define information in this way, please describe the situation.










share|cite|improve this question






















  • The references of the Wikipedia entry on 'physical information' are probably a good place to start.
    – tfb
    9 hours ago










  • FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
    – PM 2Ring
    8 hours ago










  • It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
    – safesphere
    4 hours ago















up vote
14
down vote

favorite












This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.




Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.




If this is impossible, or if nobody knows how to define information in this way, please describe the situation.










share|cite|improve this question






















  • The references of the Wikipedia entry on 'physical information' are probably a good place to start.
    – tfb
    9 hours ago










  • FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
    – PM 2Ring
    8 hours ago










  • It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
    – safesphere
    4 hours ago













up vote
14
down vote

favorite









up vote
14
down vote

favorite











This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.




Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.




If this is impossible, or if nobody knows how to define information in this way, please describe the situation.










share|cite|improve this question













This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.




Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.




If this is impossible, or if nobody knows how to define information in this way, please describe the situation.







relativity causality information






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 9 hours ago









Yly

956316




956316












  • The references of the Wikipedia entry on 'physical information' are probably a good place to start.
    – tfb
    9 hours ago










  • FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
    – PM 2Ring
    8 hours ago










  • It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
    – safesphere
    4 hours ago


















  • The references of the Wikipedia entry on 'physical information' are probably a good place to start.
    – tfb
    9 hours ago










  • FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
    – PM 2Ring
    8 hours ago










  • It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
    – safesphere
    4 hours ago
















The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago




The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago












FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago




FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago












It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago




It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago










4 Answers
4






active

oldest

votes

















up vote
7
down vote













An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:



From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.



But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.



Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]






share|cite|improve this answer










New contributor




SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • The dot of light is not "a something," it is many, many different somethings. They only look similar.
    – David Conrad
    5 hours ago






  • 2




    Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
    – SteveW
    3 hours ago




















up vote
6
down vote













There is more than one mathematical formulation for this, but here are sketches of a couple of examples.



In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.



In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.



The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.






share|cite|improve this answer






























    up vote
    4
    down vote













    Already two insightful answers here, but I'll chip in.



    This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.



    If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!






    share|cite|improve this answer




























      up vote
      0
      down vote













      How about:



      Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "151"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f444298%2fwhat-precisely-does-it-mean-for-information-to-not-travel-faster-than-the-speed%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        7
        down vote













        An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:



        From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.



        But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.



        Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]






        share|cite|improve this answer










        New contributor




        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.


















        • The dot of light is not "a something," it is many, many different somethings. They only look similar.
          – David Conrad
          5 hours ago






        • 2




          Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
          – SteveW
          3 hours ago

















        up vote
        7
        down vote













        An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:



        From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.



        But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.



        Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]






        share|cite|improve this answer










        New contributor




        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.


















        • The dot of light is not "a something," it is many, many different somethings. They only look similar.
          – David Conrad
          5 hours ago






        • 2




          Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
          – SteveW
          3 hours ago















        up vote
        7
        down vote










        up vote
        7
        down vote









        An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:



        From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.



        But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.



        Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]






        share|cite|improve this answer










        New contributor




        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:



        From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.



        But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.



        Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]







        share|cite|improve this answer










        New contributor




        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 hours ago









        Carl Leth

        1032




        1032






        New contributor




        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered 6 hours ago









        SteveW

        713




        713




        New contributor




        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        SteveW is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.












        • The dot of light is not "a something," it is many, many different somethings. They only look similar.
          – David Conrad
          5 hours ago






        • 2




          Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
          – SteveW
          3 hours ago




















        • The dot of light is not "a something," it is many, many different somethings. They only look similar.
          – David Conrad
          5 hours ago






        • 2




          Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
          – SteveW
          3 hours ago


















        The dot of light is not "a something," it is many, many different somethings. They only look similar.
        – David Conrad
        5 hours ago




        The dot of light is not "a something," it is many, many different somethings. They only look similar.
        – David Conrad
        5 hours ago




        2




        2




        Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
        – SteveW
        3 hours ago






        Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
        – SteveW
        3 hours ago












        up vote
        6
        down vote













        There is more than one mathematical formulation for this, but here are sketches of a couple of examples.



        In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.



        In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.



        The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.






        share|cite|improve this answer



























          up vote
          6
          down vote













          There is more than one mathematical formulation for this, but here are sketches of a couple of examples.



          In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.



          In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.



          The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.






          share|cite|improve this answer

























            up vote
            6
            down vote










            up vote
            6
            down vote









            There is more than one mathematical formulation for this, but here are sketches of a couple of examples.



            In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.



            In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.



            The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.






            share|cite|improve this answer














            There is more than one mathematical formulation for this, but here are sketches of a couple of examples.



            In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.



            In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.



            The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 6 hours ago

























            answered 6 hours ago









            Ben Crowell

            47k3150286




            47k3150286






















                up vote
                4
                down vote













                Already two insightful answers here, but I'll chip in.



                This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.



                If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!






                share|cite|improve this answer

























                  up vote
                  4
                  down vote













                  Already two insightful answers here, but I'll chip in.



                  This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.



                  If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!






                  share|cite|improve this answer























                    up vote
                    4
                    down vote










                    up vote
                    4
                    down vote









                    Already two insightful answers here, but I'll chip in.



                    This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.



                    If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!






                    share|cite|improve this answer












                    Already two insightful answers here, but I'll chip in.



                    This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.



                    If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 6 hours ago









                    Andrew Steane

                    2,065519




                    2,065519






















                        up vote
                        0
                        down vote













                        How about:



                        Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          How about:



                          Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            How about:



                            Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.






                            share|cite|improve this answer












                            How about:



                            Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 4 hours ago









                            Neil G

                            1549




                            1549






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f444298%2fwhat-precisely-does-it-mean-for-information-to-not-travel-faster-than-the-speed%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Eastern Orthodox Church

                                Zagreb

                                Understanding the information contained in the Deep Space Network XML data?