What precisely does it mean for “information to not travel faster than the speed of light”?
up vote
14
down vote
favorite
This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.
Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.
If this is impossible, or if nobody knows how to define information in this way, please describe the situation.
relativity causality information
add a comment |
up vote
14
down vote
favorite
This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.
Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.
If this is impossible, or if nobody knows how to define information in this way, please describe the situation.
relativity causality information
The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago
FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago
It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago
add a comment |
up vote
14
down vote
favorite
up vote
14
down vote
favorite
This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.
Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.
If this is impossible, or if nobody knows how to define information in this way, please describe the situation.
relativity causality information
This is something that's been bothering me for a while. The way we usually first hear about causality is that "nothing travels faster than $c$". But then you learn that phase velocities can sometimes be faster than $c$, so we revise the previous statement to "information never travels faster than $c$". But maddeningly, I've never seen anyone actually define what "information" means in this context. Without a mathematical definition of information, it seems to me that the preceding statement is totally vacuous.
Can someone please provide a rigorous definition of information in this context, so that e.g. given some dynamical equations of a relativistic theory (e.g. of electrodynamics) I can verify mathematically that the equations indeed do not allow information to travel faster than light.
If this is impossible, or if nobody knows how to define information in this way, please describe the situation.
relativity causality information
relativity causality information
asked 9 hours ago
Yly
956316
956316
The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago
FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago
It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago
add a comment |
The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago
FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago
It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago
The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago
The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago
FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago
FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago
It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago
It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago
add a comment |
4 Answers
4
active
oldest
votes
up vote
7
down vote
An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:
From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.
But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.
Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]
New contributor
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
2
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
add a comment |
up vote
6
down vote
There is more than one mathematical formulation for this, but here are sketches of a couple of examples.
In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.
In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.
The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.
add a comment |
up vote
4
down vote
Already two insightful answers here, but I'll chip in.
This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.
If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!
add a comment |
up vote
0
down vote
How about:
Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:
From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.
But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.
Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]
New contributor
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
2
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
add a comment |
up vote
7
down vote
An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:
From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.
But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.
Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]
New contributor
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
2
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
add a comment |
up vote
7
down vote
up vote
7
down vote
An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:
From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.
But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.
Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]
New contributor
An example might help. While not giving a "strict definition," it might be a step toward constructing one. (I think I am remembering this from Hans Reichenbach's classic Philosophy of Space and Time.) Here goes:
From earth, you can sweep a laser beam across the surface of the moon such that the "dot of light" on the moon's surface moves -- continuously -- from point A on one side of the moon to point B on the other at a speed faster than the speed of light. The dot of light is a "something" -- so it's false to say that nothing can move faster than the speed of light.
But that moving dot of light cannot be used to convey information from some person (or some machine) at Point A to another at Point B. That is, there is nothing Person A can do with the dot of light while it is at A, to tell Person B by some pre-arranged code whether he (person A) is, say, a 0 or a 1 (drunk or sober; male or female, etc). The moving "dot of light", while a something, is not the sort of "thing" that can be marked by Person A to as to inform Person B of some fact.
Now of course, by pre-arrangement, Person A and Person B might use the dot of light to synchronize something: Person A might agree to make a toast to B when he sees the dot of light, so when Person B sees it, he has in a sense been informed that he has just been toasted. So a good definition of "information" will need to make clear why this doesn't count. [[Two other early answers prompt this addition. As I saw it,the questioner's perplexity seems to arise less from lack of a definition of "information" (or from need for some mathematical way of verifying the "nothing bearing information can travel faster than light" law) than from simple bafflement about what it means to hedge this limit-law by saying that the limit is not on how anything can travel, but only on how fast an information-bearing thing can travel"* (or "be sent"). "How," the questioner seems to be asking,"is this not just a dodge? What is added when we qualify the limit-claim by specifying that it is only a limit on information-bearing entities?" Insofar as this is the sticking-point (the questioner might want to clarify this!), then what's needed is simple conceptual clarification. And here one later answer (by Steane) here helps resolve the residual puzzle I left hanging. When we say that some moving entity E can carry information from A to B, E must be such the entity that it can be used not just to synchronize, but to notify a receiver at Point B of some arbitrary change being effected at Point A. In the synchronized-toast puzzle I left hanging, the person at A cannot bring about some arbitrary change at A (say, decide whether or not to hoist a toast to person B), and then by the moving light-dot, notify B of this. I think this solves the residual puzzle!]]
New contributor
edited 2 hours ago
Carl Leth
1032
1032
New contributor
answered 6 hours ago
SteveW
713
713
New contributor
New contributor
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
2
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
add a comment |
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
2
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
The dot of light is not "a something," it is many, many different somethings. They only look similar.
– David Conrad
5 hours ago
2
2
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
Could you spell out a physics-criterion for what you will count as a "something"? And then see how it comes out on this: by the criterion, does that big wave off Malibu on which I surfed yesterday. The wave (and I) was rolling forward at about 20 knots; the the water constituting the wave, of course, was not. Will the wave by your criteria count as a "something" (governed, so to speak, by the "no-superluminal-things" law)--or will it, like the dot-of-light, count as "many, many different somethings" (not governed by that law)?
– SteveW
3 hours ago
add a comment |
up vote
6
down vote
There is more than one mathematical formulation for this, but here are sketches of a couple of examples.
In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.
In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.
The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.
add a comment |
up vote
6
down vote
There is more than one mathematical formulation for this, but here are sketches of a couple of examples.
In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.
In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.
The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.
add a comment |
up vote
6
down vote
up vote
6
down vote
There is more than one mathematical formulation for this, but here are sketches of a couple of examples.
In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.
In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.
The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.
There is more than one mathematical formulation for this, but here are sketches of a couple of examples.
In a quantum-mechanical context, consider the following variation of the EPR paradox. A nucleus having zero angular momentum undergoes symmetric fission into two fragments, each with $ell=1$. By conservation of angular momentum their angular momenta are opposite. Let's say that except for this correlation, the two angular momentum vectors are randomly oriented. The fragments are observed by Alice and Bob, and these two observations are spacelike in relation to one another. Suppose that Alice measures $ell_x$, but Bob measures $ell_z$. It shouldn't matter who goes first, but let's say that Alice does. Can Alice send information to Bob by deciding whether or not to measure her particle's $ell_x$? If we calculate Bob's probabilities, they actually end up the same regardless of whether or not Alice has done her measurement before he does his. So essentially the mathematical statement is that stuff at A can't affect the density matrix at B.
In a classical context, a pretty standard way of talking about this is in terms of wave equations and global hyperbolicity. We want our spacetime to be globally hyperbolic, which basically means that wave equations have solutions to Cauchy problems that exist and are unique. An example of a failure of global hyperbolicity would be if you have a naked singularity. If there is global hyperbolicity, then you can find the solution to a wave equation at a certain point in space by knowing only the initial conditions on a Cauchy surface that is within that point's past light cone. This approach is developed in detail in Hawking and Ellis. They use a wave equation for a scalar field, just because it's mathematically simple.
The first example, using the density matrix, corresponds pretty closely to the information-theoretic idea of information. The second one focuses more on propagating signals.
edited 6 hours ago
answered 6 hours ago
Ben Crowell
47k3150286
47k3150286
add a comment |
add a comment |
up vote
4
down vote
Already two insightful answers here, but I'll chip in.
This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.
If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!
add a comment |
up vote
4
down vote
Already two insightful answers here, but I'll chip in.
This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.
If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!
add a comment |
up vote
4
down vote
up vote
4
down vote
Already two insightful answers here, but I'll chip in.
This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.
If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!
Already two insightful answers here, but I'll chip in.
This is very much about the notion of cause and effect. That notion is itself not as straightforward as one might initially think, but I won't get into the metaphysics. The main point is that the word 'information' is an attempt to capture the idea that if a change $delta$ happens at event A, then if as a result of that change things go differently for X, such that the change in X can influence what happens at event B, and make things transpire differently there than they would have done if $delta$ had not happened, then X cannot travel faster than light.
If a theory has some gauge freedom then it can be non-trivial to figure out whether it is respecting this. Sorry!
answered 6 hours ago
Andrew Steane
2,065519
2,065519
add a comment |
add a comment |
up vote
0
down vote
How about:
Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.
add a comment |
up vote
0
down vote
How about:
Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.
add a comment |
up vote
0
down vote
up vote
0
down vote
How about:
Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.
How about:
Consider two points in spacetime X and Y. If Y is not in X's light cone, then intervening at a hypothetical distribution over events Q at X cannot affect a distribution over events R at Y: P(R) = P(R | do(Q=q)) for all q.
answered 4 hours ago
Neil G
1549
1549
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f444298%2fwhat-precisely-does-it-mean-for-information-to-not-travel-faster-than-the-speed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
The references of the Wikipedia entry on 'physical information' are probably a good place to start.
– tfb
9 hours ago
FWIW, the Subluminal Java applet by Greg Egan shows how a wave packet with superluminal group velocity cannot be used to transmit information faster than c.
– PM 2Ring
8 hours ago
It's energy that can't move faster than time. See this answer: physics.stackexchange.com/questions/22084/…
– safesphere
4 hours ago